训练深度神经网络失败的罪魁祸首不是梯度消失,而是退化
「梯度消失」指的是随着网络深度增加,参数的梯度范数指数式减小的现象。梯度很小,意味着参数的变化很缓慢,从而使得学习过程停滞,直到梯度变得足够大,而这通常需要指数量级的时间。这种思想至少可以追溯到 Bengio 等人 1994 年的论文:「Learning long-term dependencies with gradient descent is difficult」,目前似乎仍然是人们对深度神经网络的训练困难的偏好解释。
如有侵权请及时联系我们处理,转载请注明出处来自
推荐文章
科技快看 网站地图广州壹创集信息科技有限公司 版权所有 粤ICP备2021122624号